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Identifying the spatial variability and risk areas for southern root-knot nematode [Meloidogyne incognita (Kofoid &
White) Chitwood] (RKN) is key for site-specific management (SSM) of cotton (Gossypium hirsutum L.) fields. The
objectives of this study were to: (i) determine the soil properties that influence RKN occurrence at different scales;
and (ii) delineate risk areas of RKN by indicator kriging. The study site was a cotton field located in the southeastern
coastal plain region of the USA. Nested semivariograms indicated that RKN samples, collected from a 50×50 mgrid,
exhibited a local and regional scale of variation describing small and large clusters of RKN population density.
Factorial kriging decomposed RKN and soil properties variability into different spatial components. Scale dependent
correlations between RKN data showed that the areas with high RKN population remained stable though the
growing season. RKN data were strongly correlated with slope (SL) at local scale and with apparent soil electrical
conductivity deep (ECa-d) at both local and regional scales, which illustrate the potential of these soil physical
properties as surrogate data for RKNpopulation. The correlation betweenRKNdata and soil chemical propertieswas
soil texture mediated. Indicator kriging (IK) maps developed using either RKN, the relation between RKN and soil
electrical conductivity or a combination of both, depicted the probability for RKNpopulation to exceed the threshold
of 100 second stage juveniles/100 cm3 of soil. Incorporating ECa-d as soft data improved predictions favoring the
reduction of the number of RKN observations required to map areas at risk for high RKN population.
+1 334 844 4586.
rrycd@uga.edu (C. Perry),
a.edu (G. Vellidis),

l rights reserved.
© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Southern root-knot nematode [Meloidogine incognita (Kofoid &
White) Chitwood] (RKN) usually aggregates in irregular patches of
coarse sandy soil texture (Goodell and Ferris, 1980; Koenning et al.,
1996). In these areas cotton plants typically show no obvious early
season above-ground symptoms of nematode damage; hence, it is
difficult to identify patches infested by RKN before damage to the crop
occurs. Yield losses attributed to southern root-knot nematode (RKN)
account for 72% of the total losses caused by different species of
nematodes found in U.S. cotton fields.

The assessment of RKN populations is commonly made through
collection of soil samples. However high sampling costs can hamper
an accurate estimation of its spatial distribution, leading to missed
population patches and the reduced efficacy of any management
strategy. Besides soil texture, there might be other biotic and abiotic
factors associated with nematode reproduction, movement, and
distribution within fields. Therefore, if the relationship between
RKN and these controlling factors can be established, they can be used
for assessing areas at risk for high RKN populations which can be
targeted for site-specific management (SSM) and reduce the number
of required RKN samples.

Various geostatistical techniques have been applied to nematode
population data to determine sampling strategies, levels of infestation,
and risk areas. In addition, they have been widely used to describe the
spatial variability of nematodes and their spatial relationship with other
variables. Through a nested sampling design, Webster and Boag (1992)
showed that the spatial dependency of cereal cyst nematode (Heterodera
avenae) and potato cyst nematode (Globodera rostochiensis) in the topsoil
ranged from 5 to 50m. Comparison of indicator direct and cross-
semivariograms also indicated that the population increased from patch
edges towards their centers. Avendaño et al. (2003) found a poorly
structured spatial variability for soybean cyst nematodes-SCN (Heterodera
Glycines) in twoMichiganfields (U.S.). For the samefields, Avendaño et al.
(2004) reported a positive correlation between SCN population density
andpercentage of sand.Wyse-Pester et al. (2002)used semivariograms to
explain the spatial dependenceof threedifferent nematode specieswithin
two corn fields. Nematode samples were correlated over distances of 115
to 649 m according to the direction (spatial anisotropy).When they tried
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to associate nematode population density with soil texture and organic
matter content, correlations were inconsistent. Noe and Barker (1985)
evaluated 26 different edaphic properties with respect to the spatial
distribution of RKN and found that high levels of clay or organic matter,
low copper concentrations, and small changes in percent soil moisture
were strongly correlated with RKN spatial distributions. Monfort et al.
(2007) explained 65–86% of cotton yield variability measured in plots
from similar geographic locations using the initial concentrations of RKN
and sand content. Other studies have correlated the abundance of RKN
with soil pH (Melakeberhan et al., 2004) and soilmoisture (Wheeler et al.,
1991; Windham and Barker, 1993).

Although previous studies obtained promising results for the
characterization of the nematode spatial variability and identification
of nematode covariates, none used covariates to identify areas at risk
for high RKN populations. Therefore, in this paper we adopted a
geostatistical approach to verify the hypothesis that the presence of
RKN may be related with soil properties which could then be used as
surrogate data to identify high population risk areas. To test these
hypotheses, factorial and indicator kriging were used to identify
multiple scales of variation and separate them into the corresponding
spatial components which can later be used as surrogate data to
estimate the probability or risk of encountering population densities
above a critical threshold (Goovaerts, 1998; Goovaerts et al., 2005a,b).
Factorial kriging analysis (FKA) has been used extensively in soil
science (Goovaerts, 1994; Castrignanò et al., 2000). Typically through
a filtering of short-range variation FKA enhances the relation between
variables that might otherwise be confounded by mixing all different
sources of variation, leading to a better understanding of the physical
underlyingmechanisms controlling spatial patterns. Castrignanò et al.
(2007) used factorial kriging to compute one regionalized factor that
summarizes the effect of soil pH, electrical conductivity, exchange
sodium percentage, and total clay plus fine silt content on soil
salinization. Goovaerts (1994) separated the local and regional
variation of soil and vegetation properties using factorial kriging. He
attributed local variation to field-to-field differences and regional
variation to the presence of different soil types. Moreover, Goovaerts
(1998) showed that the probability that an attribute value exceeds a
target threshold at an unsampled location can be estimated by
indicator kriging which uses a kriging estimator similar to the one
developed for continuous variables. Previous studies have adopted
indicator kriging (IK) to estimate and map the risk of exceeding
threshold values in watershed management (Lyon et al., 2006), soil
pollution (Goovaerts et al., 1997; Lin et al., 2002) and groundwater
contamination (Goovaerts et al., 2005a,b).

The objectives of this study are: (i) to determine the soil properties
that influence RKN occurrence at difference scales; and (ii) to
delineate areas at risk for RKN based on indicator kriging (IK) of
hard data (i.e., measured RKN population density), soft data (i.e.,
logistic regression between RKN and soil properties), and the
combination of hard and soft data.

2. Materials and methods

2.1. Study fields description and data collection

The study was conducted in a 20 ha irrigated producer field (31o

23′ 60 N,−83o 37′ 48 E), located in the USA southeastern coastal plain
which is characterized by sandy soils, small differences in topographic
relief, and a subtropical climate. The fieldwas planted in 2006with the
cotton (Gossypium hirsutum L.) cultivar – Delta & Pine Land Company
DP 555 BG/RR.

A 50×50 m grid (0.25 ha cell size) was superimposed over the
field and a georeferenced sample was collected at the center of each
cell (99 samples total). Soil samples for nutrients, RKN, and texture
analyses were collected from random locations within a 1.5 m radius
of the central node of each grid. Five 30 cm soil cores were collected
and combined into a composite sample for phosphorus (P), potassium
(K), calcium (Ca), magnesium (Mg), and soil pH determination. These
samples were collected one month after planting. Soil samples for
RKN population density determination (second stage juveniles) were
collected three times during the growing season — 75, 110, and
167 days after planting (DAP)which coincidedwith early season (first
flower), mid season, and harvest. These sampling events were
designated as RKN1, RKN2, and RKN3, respectively. At each sampling
event, eight individual subsamples were collected around the center
of each cell and composited into a single sample representing RKN
population density within each grid cell. The subsamples were
collected with a 3 cm diameter sampler which was inserted 15–20 cm
deep into the soil adjacent to plant tap roots where the RKN are likely to
live (Shurtleff and Averre, 2000). Nematodes were extracted from
100 cm3 of soil by centrifugal flotation (Jenkins, 1964).

Exhaustively sampled data included apparent soil electrical
conductivity (ECa) and elevation (EL), and information derived from
these data (i.e., slope derived from elevation). In this study, the
VERIS® 3100 implement was used to measure ECa between 0 and
30 cm (shallow, ECa-s) and 0–90 cm (deep, ECa-d) in 9 m parallel
swaths throughout the fields and were georeferenced. Elevation data
(EL) were collected at the same time as ECa data with RTK GPS
receiver mounted on the tractor pulling the VERIS® 3100 implement.

2.2. Data processing

Although the EL and ECa data sets included more than 7000
observations, the parallel swaths used to collect the data were not
necessarily collocated with the sampling nodes (grid cell centers).
Ordinary punctual kriging was used to estimate the values of EL and
ECa at the sampling nodes (Kerry and Oliver, 2003) using TerraSeer
Space-Time Information System (STIS) vr. 1.7.91 (www.terraseer.com).

Raster maps of terrain slope (SL) were derived from EL rastermaps
using the Spatial Analyst extension of ArcVIEW v. 9.0 (ESRI, 2004a).
The slope at the sampling node was estimated by averaging the pixel
values of slope contained within the 1.5 m radius sampling area
surrounding each sampling node. This average slope was then
associated with the corresponding RKN data.

2.3. Statistical and multivariate geostatistical analyses

2.3.1. Modeling nested semivariograms
Some of the RKN population density and soil properties data had

skewness values above +1 or below −1; hence, failing the
assumption of normality. Because the variogram, core of geostatistical
analyses, is very sensitive to extreme values, a normal score
transformation of the data was performed when necessary. The
normal score transform replaced each observation with the
corresponding quantile in the standard normal distribution, enabling
the normalization of any histogram regardless of its original shape
(Goovaerts et al., 2005a,b). Because we are dealing with different
types of date sets, all the variables were standardized to a zero mean
and unit variance.

The interaction of several biotic or abiotic processes with RKN
population density and soil properties might operate differentially at
different spatial scales; hence, if the scales at which a pair of variables
operate are very different from one another, this should be evidenced
by their semivariograms. Each variable can be modeled by a nested
semivariogram, which takes the form of a linear combination of
different structures gl (h) with unique ranges of spatial dependence:

γðhÞ = ∑
L

l=0
blglðhÞ with b ≥ 0 ð1Þ

where bl is the variance of the corresponding semivariogram
model gl (h). For L=2, the variance b0 is called nugget effect, g1 (h) is
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the model with a short range, a1 (local variability) and g2 (h) is long
range model, a2 (regional variability) (Goovaerts, 1997). The linear
model of regionalization (Eq. (1)) assumes that a random function Z
(u) with a nested semivariogram γ(h) can be interpreted–decom-
posed as the sum of L+1 independent orthogonal random functions
or spatial components, Zl, with semivariogram blgl (h) and a local
mean or trend component m(u):

ZðuÞ = ∑
L

l=0
ZlðuÞ + mðuÞ ð2Þ

where Z0 (u) is a micro-scale component, and Z1 (u) and Z2 (u) are
the short-range and long-range spatial components associated with
the semivariogram models b1g1 (h) and b2g2 (h), respectively. The
best semivariogram model for each data set was chosen based on the
maximum coefficient of determination and minimum residual sum of
squares for the fit (Isaacs and Srivastava, 1989).

2.3.2. Factorial kriging analysis
Factorial kriging analysis (FKA) has been widely described in the

geostatistical literature (Matheron, 1982; Goovaerts, 1997). Thus,
only a short section is devoted to it. This geostatistical method allows
the estimation and mapping of each source of spatial variability or
spatial component Zl(u) identified in the nested semivariogram,
making possible the estimation of scale-dependent correlations
among variables. After filtering the noise in the data, spatial
components can be grouped into sources of local variability (short
range) and regional variability (long range plus local mean or trend).
Combining the trend estimate and long-range component was
initially proposed by Jaquet (1989) to reduce the impact of the size
of the search window on the estimation of the long-range component.
Since then, it has been used in several applications of factorial kriging
(Oliver et al., 2000; Goovaerts et al., 2005a,b; Oliver, 2010).

Scale-dependent correlations, ρl, were calculated directly from
kriged spatial components at a specific spatial scale l (i.e., short or
regional), without the effect of other scales of variation (e.g., Goovaerts,
1998). In the present application, the spatial distribution of RKN
population is likely influenced by soil properties which are expected to
be correlated with RKN data at the scale at which they operate. For
example, the Pearson's correlation coefficient between RKN2 and slope
(SL) is only−0.37 while the same correlation is−0.59 after noise and
local components were filtered out.

Statistical and geostatistical analyses were performed using SAS
(SAS Institute, 2007), TerraSeer STIS v. 1.7.91(www.terraseer.com),
ISATIS (Geovariances, 2007), and the Geostatistical Analyst extension
of ArcVIEW v. 9.0 (ESRI, 2004b).

2.4. Indicator approach to delineate high risk areas

The identification of areas at risk for high populations of RKN is
required for management purposes. A threshold of 100 second stage
juveniles/100 cm3 of soil is typically used by cotton producers in the
Southeast U.S. to trigger nematicide applications. Three geostatistical
approaches were evaluated for mapping the probability that this
threshold is exceeded: a) probabilities calculated from indicator kriging
(IK) of RKN population data – Hard data, b) probabilities derived from
ordered logistic regression between RKN population and ancillary data
(McCullagh, 1980) – Soft data, and c) logistic regression probabilities
updated using kriged residuals calculated from the a and b techniques
(Goovaerts et al., 1997)— Hard and Soft data. Indicator kriging uses the
RKN population data only; hence, the probability of exceedence
depends on the spatial structure of the sparsely sampled RKN
population. However, the estimation can be improved by including
densely sampled secondary data related to RKN population. Therefore,
probability estimateswill not only depend on the RKNpopulation alone
but also on the spatial variability of the secondary variables and their
relationships with the primary variable. An indicator kriging approach
has been selected because: 1) nematode population data typically
exhibit a skewed distribution which makes hazardous any transforma-
tion to achieve a Gaussian distribution, and 2) the grower is mainly
interested in a map of the probability that the RKN population density
will exceed an advisory threshold.

2.4.1. Indicator kriging — hard data
The modeling of the spatial distribution of z values above or below

a given threshold value zk, 100 RKN second stage juveniles/100 cm3 of
soil, required a prior coding of each observation z(u) (RKN population
density) into a new binary or hard indicator variable: 0 (below
threshold) and 1 (above threshold). The indicator semivariogramwas
calculated using six lags of 50m and modeled with ISATIS (Geovar-
iances, 2007).

2.4.2. Logistic regression — soft data
A soft indicator equivalent to a probability (i.e. valued between 0

and 1) can be derived from the relationship between the hard
indicator variable and a secondary variable which is more densely
sampled. In this study the secondary variable(s) was selected from a
set of soil properties after the structural correlation analysis. The
response variable, expressed in terms of probability, wasmodeled as a
linear function of one or multiple soil properties (X1, X2, …, Xu)
(Kleinschmidt et al., 2000; Lyon et al., 2006):

logðpu = 1−puÞ = α + β1X1 + β2X2 + ::: + βuXu ð3Þ

where pu is the probability of having a RKN population density
above the threshold; βu are the parameters estimated by logistic
regression; and Xu represents the soil properties or explanatory
variables. Therefore, the soft or prior probability of observing a
population of RKN above the threshold based on RKN surrogate data
are estimated as:

p*ðuÞ = eðα + β*XÞ
= ð1og + eðα + β*XÞÞ: ð4Þ

The significance of the logistic regressionmodelwas evaluated using
a likelihood ratio (−2LogL) with an approximated chi-square distribu-
tion. In this study the explanatory variable(s) in Eq. (4) was the local
mean of the soil property with the highest and most stable spatial
correlation with RKN as determined from the scale-dependent
correlation analysis. These local means were estimated at the RKN
sampling locations by factorial kriging. The prediction formula (Eq. (4))
was applied to the ordinary kriging map of secondary data using the
TerraSeer STIS software to produce a prior probabilitymap based on soft
data.

2.4.3. Indicator kriging — hard and soft data
Soft indicators derived from the logistic regression can be considered

as an intermediate step in the delineation of probability maps when
surrogate data are used (Kleinschmidt et al., 2000; Grunwald et al.,
2006; Lyon et al., 2006). At any location u, prior probabilities p*(u) can
be updated into posterior probability using the residuals calculated
between the probabilities calculated from hard and soft data. The
indicator maps from hard and soft data were combined following the
method suggestedbyGoovaerts et al. (1997): 1) residuals are computed
by subtracting, at each RKN sampling location, prior probabilities (soft
data) from the indicator variable (hard data), 2) the semivariogram of
the residuals was calculated and the model was used to interpolate
residuals through simple kriging, and 3) the final probability map was
obtained by adding the prior probability map to the kriged residuals.

To simulate the impact of a smaller number of RKN data on the
accuracy of indicator maps and to assess the benefit of using soft data,
the procedure described above was repeated using a training data set
composed of 65% and 37% of the initial RKN sampling observations
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which were selected randomly. The accuracy of the probability maps
wasquantifiedusing jack-knifewhereby theoriginal data set is split into
two samples, one for mapping and the other for validation. For each
geostatistical approach (i.e., hard data, hard and soft data) and sampling
density, map accuracy was determined by the number of false positives
for a series of probability classes: the more false positives in the highest
risk class, the lower the map accuracy.

3. Results and discussion

3.1. Descriptive statistics

The RKN population data, with skewness N1, exhibited both spatial
and seasonal variability. Using the coefficient of variation (CV) as an
index of dispersion, it was possible to establish the within-field relative
variability of RKN population and some soil properties. While the
average population during RKN1 was low, it shows the highest
dispersion around the mean relatively to RKN2 and RKN3. The highest
mean RKN population density was observed during RKN2 which
contradicts the generally accepted rule that the highest population
density occurs near harvest (Table 1). Even though the cotton was
irrigated, this finding might relate to drought conditions experienced
towards the end of the growing season (September and October in
2006) and with limited availability of infection sites as a result of root
decay (Stanton, 1986). The soil chemical properties exhibited less
skewness, except for K andMg, and the dispersion around themean and
the CV were lower than for the RKN population density and the soil
physical properties (Table 1). For the soil physical properties, small
changes in EL described by the low SD and CV values, evidenced its low
spatial variability (Table 1). Therefore, this variablewas not included for
subsequent analyses in this study. In contrast, the CV of slope and ECa-d
(also having skewness values N1) were fairly high compared to soil
chemical properties which might indicate that these soil physical
properties had higher variation than most soil chemical properties.

3.2. Modeling nested semivariograms

The existence of several sources of variation operating at different
scales resulted in nested semivariograms for most of the variables
(Fig. 1). Common features in the experimental semivariograms
(square symbol) for the RKN population at RKN1, RKN2, and RKN3
suggested their spatial correlation. Therefore, the spatial variability
was modeled as a combination of three different spatial structures: i)
nugget effect — associated with measurement errors due to the
sampling or to micro-variation not captured by the 50 m sampling
interval, ii) short scale of variation or short-range structure around
70 m (for RKN2, and RKN3), describing small clusters; and iii) large
Table 1
Descriptive statistics of the cotton RKN population density and the soil physical and
chemical properties.

Variable Descriptive statistics

Mean Min.–Max. SDa CV (%)b Skewness

RKN1c 43.9 1–1281 139.4 319.7 7.5
RKN2c 132.1 1–1629 226.4 171.4 4.3
RKN3c 116.2 1–729 145.8 125.5 2.0
EL (m) 78.2 74–81 1.7 2.1 −0.5
SL (%) 1.2 0.13–3.54 0.6 50.4 0.6
ECa-d (mS/m) 1.2 0.45–7.95 1.1 89.5 4.0
soil pH 6.4 5.34–7.49 0.4 6.5 0.1
P (kg/ha) 83.9 45–141 20.1 24 0.7
K (kg/ha) 80.2 41–163 22.5 28 1.2
Ca (kg/ha) 897.0 276–1924 324.9 36.2 0.6
Mg (kg/ha) 122.1 30–345 55.0 45 1.3

a Standard deviation.
b Coefficient of variation, percentage.
c Counts of second stage juveniles per 100 cm3 soil.
scale of variation or long-range structure, with a range of 216 m and
481 m for RKN2 and RKN3 respectively, indicating large clusters of
RKN population (Fig. 1a–c).

The semivariograms of ECa-d, SL, soil pH, and Ca shared similar
features with the semivariograms of RKN2, and RKN3, which suggested
their spatial correlation at short and long scales inmost cases (Fig. 1b, c,
d, e, f, and i). Among soil properties, the semivariograms of ECa-d, soil pH,
K and Ca had similar short scale ranges, fluctuating between 102 and
131 mwhichmight indicate that the spatial variability of ECa-d could be
used to explain the variability of other variables; being then a good
option as a covariate for RKN population (Fig. 1).

3.3. Scale-dependent correlation analyses

Table 2 lists the aspatial (Pearson's) and scale-dependent
correlation coefficients between RKN population densities (RKN1,
RKN2 and RKN3) and soil physical and chemical properties. Filtering
the noise by factorial kriging generally increased the correlation
among variables. For example, while the Pearson's correlation
coefficient between RKN2 and ECa-d was only −0.50, a much larger
correlation of −0.77 was observed when the noise and local
components for both variables were filtered out. This strong regional
correlation was blurred by the weak correlation at the local scale
(Table 2).

Despite potential changes in the size of RKN clusters between the
three sampling events, short scale correlations of 0.20 and 0.18, and
long scale correlations of 0.46 and 0.51 between RKN1–RKN2 and
RKN2–RKN3 (data not shown), respectively, indicated that the
locations of high RKN population density, especially the large clusters,
remained stable until the end of the growing season.

The correlation between RKN population density and soil physical
properties changed as a function of spatial scale (Table 2). At local scale
SL exhibited the most consistent negative seasonal correlation with the
RKN population, which reflects the similarity in the short-range
structures of both nested models (Fig. 1a–c, e). At a regional scale, this
negative correlation exceeded −0.42 suggesting that high population
density of RKN could be found in areas of a fieldwith little or no slope. A
strong negative correlation between each three population densities
and ECa-d was also observed at regional scale (Table 2). Previous studies
have related sandy or coarse-textured soil with low ECa-d values
(Khalilian et al., 2001; Perry et al., 2006) and sandy areaswith high RKN
population density (Monfort et al., 2007). A correlation analysis
between sand fraction, measured at this field and four other nearby
fields showed a strong negative correlation between ECa-d and soil
particle size. Therefore, the negative spatial correlation between RKN
population density and ECa-d found here indicates that high RKN
population are more likely in large areas with low values of ECa-d which
usually characterize sandy areas.

Soil chemical properties were more strongly correlated with RKN
population density at the regional scale than at the local scale (Table 2).
The strong negative correlation of K, Ca and Mg with RKN population
density, especially at the regional scale, indicated that large RKN clusters
of high populationwere spatially correlatedwith large areas of lowK, Ca
andMg levels. Although the Ca levels (mean of 897 kg ha−1),measured
one month after planting, did not indicate any nutritional deficiency
(N247 kg ha−1 of Ca is adequate for coastal plain soils), the spatial
correlation of soil pH, K, Ca andMgwith ECa-d indicated a strongpositive
correlation at the local scale (0.44 in average) and at regional scale (0.77
in average). Therefore, the spatial variability of ECa-d could explain the
variability of soil pH, K, Ca and Mg.

The relationship between soil chemical properties and RKN
population can be considered direct or indirect or both (plant
mediated). Oka et al. (2006, 2007) stated that the relation between
RKN population and soil pH could related to the loss of nematicide
activity by ammonia-releasing organic and inorganic fertilizers due to
low levels of soil pH.Other studies have shown thatmineral salts such as



Fig. 1. Normalized semivariograms for cotton RKN samples and soil physical and chemical properties. Squares indicate the empirical semivariogram and the solid line is the fitted
model.
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NaCl, NaNO3, KCl, KNO3, CaCl2, Ca(NO3)2, MgCl2, MgSO4, FeCl2, and
FeSO4 exhibit a degree of repellency towardM. javanica andM. incognita
(Castro et al., 1990; Cadet et al., 2004). Again, this indicates that special
attention must be paid to sandy areas where salts might leach
preferentially.

The scale-dependent correlation analysis demonstrated the strong
spatial relationship of ECa-d with RKN population and most of the soil
physical and chemical properties. This result suggests that ECa-d can
be a good covariate for mapping many features on this field specially
RKN population. The advantage of ECa-d over other variables is its low
cost, allowing the collection of large volume of data to facilitate the
characterization of RKN spatial variability.

3.4. Delineating high risk areas by indicator kriging

RKN2 data were selected for the IK analysis because of their strong
spatial correlation with the soil physical and chemical properties
(Table 2). While three different geostatistical approaches were
evaluated for mapping the probability that RKN2 population density
exceeds the threshold of 100 second stage juveniles/100 cm3,
indicator kriging combining hard and soft data showed the most
promising results.
3.4.1. Indicator kriging — hard data
The presence of two scales of variation on the indicator

semivariogram calculated from 99 RKN observations suggested the
existence of two cluster sizes with high risk (probability N75%) for
RKN population to exceed the threshold (Fig. 2a). The short-range
structure (117 m) and the long-range structure (257 m) describe the
high-risk clusters located in the center and the northwest part of the
field, respectively (Fig. 3a). Thirty-four (87%) of RKN samples above
the threshold (white square symbols on the maps) coincided with
high-risk areas on themap (probability N75%) and the other 13%were
located in moderately high risk areas (50–75% probability range of
risk) (Fig. 3a, Table 3).



Table 2
Scale-dependent correlation of cotton RKN population density with soil physical and
chemical properties.

Variables Pearson
correlation
coefficient

Scale-dependent correlation
coefficients

Spatial components

Short-range Regionala

RKN1b with
ECa-d

b −0.39 0.06 −0.54
SL −0.35 −0.19 −0.61
Soil pH −0.19 0.08
P −0.09 −0.04 −0.07
K§ −0.07 −0.23 0.00
Ca −0.30 −0.08 −0.46
Mgb −0.21 −0.06 −0.31
RKN2b with
ECa-d

b −0.50 0.17 −0.77
SL −0.37 0.05 −0.59
soil pH −0.26 −0.04
P −0.09 −0.03 −0.18
Kb −0.28 −0.05 −0.46
Ca −0.45 −0.08 −0.80
Mgb −0.35 −0.06 −0.63
RKN3b with
ECa-d

b −0.26 0.01 −0.61
SL −0.19 −0.14 −0.42
Soil pH −0.23 −0.11
P 0.04 0.00 0.19
Kb −0.15 0.04 −0.55
Ca −0.22 −0.04 −0.69
Mgb −0.20 −0.05 −0.53

a Regional component corresponds to the long-range component plus local mean or
trend component.

b Spatial correlation was performed on normal score transformed data.
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The delineation accuracy of high-risk areas (probability N75%)
dropped when 64 RKN observations were used to create the IK map
(Fig. 3b). Now, 76% of the observations above the threshold were in
the predicted high-risk area and 21% were predicted to be in the
moderately high risk areas (Fig. 3b).

Indicator kriging of the smaller data set (35 RKN observations)
predicted a few scattered spots of high risk for RKN (Fig. 3c). Out of
the randomly selected RKN observations above the threshold, only
Fig. 2. Indicator semivariograms of the RKN2 population above a threshold of 100 RKN
observations (c). Residual semivariograms using soft data and 99 (d), 64 (e), and 35 RKN o
15% fell in the predicted high-risk area, while the remaining were
located in the moderately high risk areas (Table 3). This decrease in
accuracy might be associated with a reduction in the short range of
spatial correlation (from 139 to 88 m) of the indicator semivariogram
(Fig. 2c). This should serve as a warning for what could happen if
producers collect too few soil samples to quantify nematode
infestations in their fields.

3.4.2. Logistic regression — soft data
Soil ECa-d was used as the soft data because of its strong spatial

correlation with the RKN2 population and its low measurement cost
which also provide large amount of data. The use of only soft data
decreased the accuracy in the delineation of high risk areas
(probability N75%) relative to the use of hard data alone. This could
be associated with the low significance of the logistic regression
models even though the contribution of ECa-d was significant
(α=0.05) (data not shown). On the soft map created from 99 RKN
observations (Fig. 3d), only 18% of the RKN2 observations above the
threshold agreed with the predicted high risk areas (Table 3).

When the number of observations decreased from 99 to 64, only
31% of the RKN observations above the threshold were classified as
being in areas with high risk (Fig. 3e). In contrast, the soft map created
from 35 observations did not exhibit a high risk zone (Fig. 3f, Table 3).
In all three maps, however, the area delineated as having moderately
high risk (50–75%) remained relatively stable and included between
31% and 43% of the observations exceeding the threshold.

Jack-knife using 35 RKN observations indicated that the percent-
age agreement in predicted high risk areas dropped by 66%, when soft
data are used instead of hard data (Table 4).

The probability maps generated from soft data were not as
accurate as the IK maps created from the hard data in terms of
delineating the areas with the highest level of risk. However, a cotton
producer might be able to use maps created this way to target the
areas with more than 50% probability of having RKN population
density above the threshold.

3.4.3. Indicator kriging — hard and soft data
Combining hard (RKN population) and soft (ECa) data improved the

accuracy of the IKmaps created fromonly softdata, especially in thehigh
risk areas. Fifty nine (59%) of RKN samples exceeding the threshold
second stage juveniles per 100 cm3 soil calculated using 99 (a), 64 (b), and 35 RKN
bservations (f).



Fig. 3.Maps of the risk that the population exceeds 100 RKN second stage juveniles per 100 cm3 soil produced using three different algorithms and hard data densities: IK (hard data
alone) based on 99 (a), 64 (b), and 35 (c) RKN2 observations, logistic regression using ECa-d as secondary information based on 99 (d), 64 (e), and 35 (f) RKN2 observations, and soft
indicator kriging based on 99 (g), 64 (h), and 35 (i) RKN2 observations.
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coincided with high-risk areas on the map (probability N75%) and the
other 33% were located in moderately high risk areas (50–75%
probability range of risk) (Fig. 3g–i, Table 3). The semivariograms of
the residuals calculated for data sets of 99, 64, and 35 RKN observations
indicated the presence of spatial correlation with a range of spatial
dependence of around120 m (Fig. 2d–f). Although one can capitalize on
the residual's spatial correlation to improve the map, the spatial
correlation of the 35 residual values here might be a random event
associated with the spatial location and values of those observations.
The advantage of combining hard and soft data was truly tested by
reducing the initial number of RKN observations (99) available for
mapping. When the IK map was delineated from 64 RKN observations,
all the RKN observations above the threshold coincided with the areas
predicted to have a high risk of exceeding that threshold. In contrast,
only 76%and31%of these observationswere classifiedwithin that range
in the maps created with the hard data alone and soft data alone,
respectively (Table 3). The jack-knife validation method over 35 RKN
observations indicated that thepercentage agreementonpredictedhigh



Table 3
Occurrence, in number and percentage, of RKN observations above (Risk) or below (No Risk) the management threshold on various estimated ranges of risk probabilities.a

Estimated
probability
of RKN
above
threshold
(%)

Hard data Soft data Hard and soft data

Risk No Risk Risk No Risk Risk No Risk

No. (%) No. (%) No. (%) No. (%) No.(%) No. (%)

99 Observations
0–25 0 (0) 58 (97) 3 (8) 35 (58) 0 (0) 52 (86)
25–50 0 (0) 2 (3) 12 (31) 14 (23) 0 (0) 7 (12)
50–75 5 (13) 0 (0) 17 (43) 10 (16) 9 (33) 1 (2)
75–100 34 (87) 0 (0) 7 (18) 3 (5) 30 (59) 0 (0)

64 Observations
0–25 0 (0) 30 (86) 3 (10) 18 (52) 0 (0) 35 (100)
25–50 0 (0) 5 (14) 6 (21) 11 (31) 0 (0) 0 (0)
50–75 6 (21) 1 (3) 11 (38) 4 (11) 0 (0) 0 (0)
75–100 22 (76) 0 (0) 9 (31) 2 (6) 29 (100) 0 (0)

35 Observations
0–25 0 (0) 15 (68) 0 (0) 9 (41) 0 (0) 22 (100)
25–50 0 (0) 7 (32) 9 (69) 9 (41) 0 (0) 0 (0)
50–75 11 (85) 0 (0) 4 (31) 4 (18) 0 (0) 0 (0)
75–100 2 (15) 0 (0) 0 (0) 0 (0) 13 (100) 0 (0)

a The management threshold value in Georgia is 100 RKN second stage juveniles per 100 cm3 of soil.

250 B.V. Ortiz et al. / Geoderma 156 (2010) 243–252
risk areas improved 60% and 160% when the IK map-hard and soft data
was evaluated respect to the IK map delineated from hard data or soft
data alone, respectively.

Reducing the data set to 35 observations emphasized the benefit of
combining hard and soft data for delineating zones at risk for RKN
population density above the threshold value. The IK map created from
the 35hard data alone (Fig. 3c) greatly under predicted the extent of the
high risk area compared to themap created from the combined data set
(Fig. 3i). All the RKN observations above the threshold in the reduced
data set were predicted as high risk zone while only 15% of the
observations coincided in the hard data map and none coincided in the
soft data map (Fig. 3c, f, and i, Table 4).

The percentage agreement in predicted high risk areas increased
850% and 357%, when the jack-knife validation method over 64 RKN
observationswas used to evaluate IKmaps-hard and soft data respect to
the IK maps delineated from hard data or soft data alone, respectively
(Table 4). Accuracy was also improved in the lower risk areas.

The results presented here demonstrate the advantage of using
ECa-d as a covariate for improvingmapping accuracy of areas at risk for
Table 4
Results of jackknife validation comparing three indicator kriging mapping strategies – h
management threshold.a

Estimated
probability
of RKN
above
threshold
(%)

Hard data Soft

Risk No Risk Risk

No. (%) No. (%) No. (

64 observations for mapping and 35 observations for validation
0–25 0 (0) 12 (48) 0 (0
25–50 0 (20) 5 (20) 2 (2
50–75 5 (50) 5 (20) 5 (5
75–100 5 (50) 3 (12) 3 (3

35 observations for mapping and 64 observations for validation
0–25 1 (4) 11 (29) 1 (4
25–50 11 (42) 25 (66) 13 (5
50–75 13 (50) 2 (5) 10 (3
75–100 1 (4) 0 (0) 2 (8

a Data in parentheses correspond to the percentage of observations above or below the t
high RKN populations while reducing the number of RKN samples, in
this case by 35% and 64%.

If we assume that the distribution of RKN in this field is best
represented by the dense data set used to create the hard data map in
Fig. 3a, then the most striking difference is that the combined map
(Fig. 3i) under estimates by about 40% the area identified as being at
high risk by the hard data map (Fig. 3a). Nevertheless, the combined
data map does well in predicting areas with at least a moderately high
(probability N50%) risk of RKN population density exceeding the
established threshold. In light of the earlier discussion on the cost and
difficulty of collecting samples for RKN analyses, the slight loss in
accuracy using64or35RKNobservations is justifiedby the reduced cost
of creatinga combinedhard and soft datamapwitha reducednumberof
observations.

Delineating different levels of risk for high RKN population on amap
mighthelp cottonproducers to identify the zones and establishdifferent
management strategies for subsequent growing seasons. Target
sampling based on the different levels of risk could provide a better
spatial assessment of the RKN population present in the field which
ard, soft, and hard plus soft data – for identifying RKN population areas above the

data Hard and soft data

No Risk Risk No Risk

%) No. (%) No. (%) No. (%)

) 14 (56) 0 (0) 15 (60)
0) 5 (20) 1 (10) 2 (8)
0) 4 (16) 1 (10) 4 (16)
0) 2 (8) 8 (80) 4 (16)

) 20 (52) 1 (4) 20 (52)
0) 17 (45) 6 (23) 14 (37)
8) 1 (3) 9 (35) 4 (11)
) 0 (0) 10 (38) 0 (6)

hreshold for each probability class.
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might results on site-specific application of different inputs including
nematicide rates.

4. Summary and conclusions

The spatial aggregation pattern and temporal stability of RKN
population density observed in the field under study throughout the
2006 growing season met some of the requirements for site specific
management (SSM). The short range of spatial dependence can be
used as a guideline for sampling RKN population density in fields with
low topographic relief. Scale-dependent correlations, derived from
the spatial components estimated by factorial kriging, allowed the
identification of covariates for mapping RKN risk areas and delinea-
tion of RKN management zones for SSM. The moderate to strong
spatial dependence of RKN population density observed at mid season
(RKN2) and the spatial stability of areas with high populations
throughout the growing season favored their high correlation with
soil physical properties. Although the relationship between RKN
population density and soil chemical properties was at best weak, it
pointed out that site specific management of soil nutrients might
reduce the risk for having high population density of RKN. The
relationship with soil physical properties was stronger. In particular,
ECa-d is a good covariate for RKN population density because the
correlation is strong at both short and long scales and is stable with
respect to space, time and location. The spatial aggregation of RKN
data facilitated the segregation of RKN risk areas based on low values
of ECa-d through the development of indicator kriging maps
combining RKN observations (hard data) and ECa-d data (soft data).

Validation demonstrated the benefit of incorporating ECa-d as soft
data in the predictions. Indeed ECa-d data are much densely sampled
since they are less expensive and easier for a producer to collect than
the RKN samples. In the absence of soil movement or the addition of
large volumes of soil amendments, ECa data need only be collected
once.

Logistic regression showed that ECa-d alone might not capture the
total spatial distribution of RKN population density and predict the
areas at risk for high populations. The advantage of combining hard
and soft data was emphasizedwhen using a reduced data set (64 or 35
RKN observations) with ECa-d data resulted in a similar precision
accuracy than a much large data set of RKN observations alone. The
integration of other surrogate data for soil texture, such as slope and
elevation along with ECa-d, might improve the mapping accuracy eve
more.

The biggest advantage of combining soft data with hard data to
develop probability maps is the fewer RKN observations required to
assess the areas at risk for high population of RKN. Additionally, these
maps might be used to target zones for additional sampling or
application of nematicides, or both. However, it should be noted that
the identification of surrogate data and estimation of areas at risk
might be difficult if the RKN population density follows a random
pattern of spatial variation or if RKN are not present.

The fact that RKN population density increase in areas of coarse
textured soils where leaching of fertilizers is most likely to occur
stresses the importance of mapping RKN risk not only for RKN
population management but also for soil fertility management. The
strong spatial correlation between the RKN and ECa-d, a relatively
stable variable in time, indicates that ECa-d can be used to delineate
management zones for RKN which will capture most of the variation
of RKN. Future research must be focused on the effect that soil
chemical properties have on the reproduction and survival of
nematodes.
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